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I. Introduction

I
n the last years the impulse carried out by the so-called 

Web 2.0 [1] has involved also the e-learning field where 

new trends are rising. Tools like Blogs (used to share ideas), 

Wikis (used as a way to construct knowledge in a collab-

orative way), Podcast (used to distribute multimedia files over 

the Internet) and other Web Sharing Applications (e.g. Flickr, 

YouTube, del.icio.us, etc.) allow Internet communities to 

work, teach, learn, conduct business, etc. The coherent utiliza-

tion of the aforementioned tools in e-learning processes is 

called e-learning 2.0 [2]. In this vision, the distributed nature 

of the Web brings several criticisms like the management of 

users’ identities across different Web Applications, the efficient 

management of several content repositories, the harmonization 

of contents coming from heterogeneous Web sites and so on. 

In order to overcome the well recognized limitations of 

the learning paradigm supported by the current commercial 

Learning Management Systems (LMS) [3] and to provide new 

e-learning trends, we need suitable models and processes that 

dynamically and intelligently structure distributed e-learning 

knowledge and create e-learning experiences (i.e. a structured 

collection of content and services able to facilitate learners in 

acquiring a set of competencies about a specific domain) 

adapted to learner expectations and objectives in the new 

Web environment.

Ontologies and memetic agents are a suitable integrated 

approach for defining personalized e-learning experiences, i.e., 

most fitting sequences of learning activities able to maximize 

the understanding level of learners with respect to specific 

learning objectives. Indeed, ontologies can model and represent 

the educational domains of interest realizing their conceptual-

ization by identifying its relevant subjects and organizing them 

by means of a fixed set of relations [4] as depicted in many 

fields of knowledge engineering [5][6][7]. At the same time, 

memetic agents can be considered as knowledge explorers 

capable of analyzing ontologically structured knowledge and 

inferring additional information that improve learner’s under-

standing capabilities.

In this work, memetic agents’ exploration of taxonomic 

knowledge is formalized as an optimization problem. 

Indeed, a possible approach to face memetic exploration 

in ontological e-Learning context is to consider and solve 

the well-known Plant Location Problem (PLP) [8]. In par-

ticular, we propose the use of a novel distributed memetic 

algorithm, based on a multi-island idea, capable of effi-

ciently solving the e-learning PLP problem and comput-

ing good quality personalized learning exper iences. 

Different from previously proposed multi-island systems, 

our memetic agents explore learning knowledge in an 

optimal way by taking into account hardware details of 

islands composing the framework. This enables a massive 

parallelism that speeds up the generation of personalized 

e-learning presentations. Experimental results show that 

memetic exploration can find suitable sub-optimal solu-

tions with a smaller computational effort than the classical 

optimization approach. Consequently, the proposed 

approach is particularly convenient when applied in Web 

2.0 scenarios where distributed repositories and the learn-

ing paths are made by numerous subjects. Metaphorically 

speaking, our approach tries to achieve aforementioned 

results by building a so-called e-Learning Mesh, a set of 

knowledge highways whose paths connect information 

sources and learner’s requirements and cross feasible learn-

ing contents; at the same time, memetic agents are com-

putational entities that parallel pass through highways’ 

paths and compute high-quality learning roads.

This paper is organized in four sections. In Section II an 

overall view of our personalized e-learning approach is pre-

sented; in Section III, an optimization problem characterizing 

the generation of near best e-learning experience binding is 
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formalized; in Section IV, a computationally efficient, distribut-

ed memetic solution for the e-learning experience binding 

problem is furnished; the Section V reports the experimental 

results obtained from proposed optimization approach.

II. Memetic Algorithms and Multi-Agent Systems: 
A Novel Distributed Approach of Optimization
Multiagent Systems (MAS) is the subfield of Artificial Intelli-

gence whose main aim is to provide both principles for con-

struction of complex systems involving distributed multiple 

agents and mechanisms for coordination of independent agents’ 

behaviors [9]. Though there is no generally accepted definition 

of “agent” in AI [10], for the our purposes, we consider an 

agent to be an entity, such as a robot, with goals, actions, and 

domain knowledge, situated in an environment. The way it acts 

is called “agent’s behavior” and it is characterized by several 

important characteristics [11]: 

Autonomy: the agents are at least partially autonomous;  ❏

Local views: no agent has a full global view of the system, or  ❏

the system is too complex for an agent to make practical use 

of such knowledge; 

Decentralization: there is no designated controlling agent  ❏

(or the system is effectively reduced to a monolithic sys-

tem) [12].

Through a composed agent’s behaviors, an MAS is capable 

of providing different design benefits such as parallelism, robust-

ness, scalability, geographic distribution and cost effectiveness 

[13] and, consequently, it is used in several application domains 

as, for example, the wholesale power market performance mea-

sures [14]. The advantages provided by an MAS became more 

evident in 2005 when Intel Corporation followed the lead of 

IBM’s Power 4 and Sun Microsystems’ Niagara processor in 

announcing that its high performance microprocessors would 

henceforth rely on multiple processors or cores. The new 

 buzzword “multicore” highlights the plan of doubling the num-

ber of standard cores per die with every semiconductor process 

generation starting with a single processor [15]. In this novel 

scenario of distributed computing, an MAS amplifies their ben-

efits by taking into account systems’ hardware details in order 

to parallel complex tasks by exploiting opportune organiza-

tional paradigms. In particular, multicore processors allows 

MAS to organize distributed computing in a hierarchical way 

where agents are conceptually arranged in a treelike structure 

where each node represents a processor core. In this hierarchy, 

agents higher in the tree have a more global view than those 

below them. The data produced by lower-level agents in a hier-

archy typically travels upwards to provide a broader view, while 

control flows downward as the higher level agents provide 

direction to those below. As will be shown in this paper, this 

novel scenario of Hierarchical Multicore 

MAS is well suitable to model optimization 

schemes based on memetic theory. 

The term meme was coined by Richard 

Dawkins to define “the basic unit of cultural 

transmission or imitation” [16]. In the com-

putational intelligence context, the new area of memetics com-

puting is a novel class of hybrid evolutionary optimization 

algorithms based on the exploitation of methods such as the 

local improvement procedure [17][18]. 

In our present scenario, the Memetic Computing method-

ology materializes in the form of hybrid global-local heuristic 

search. In particular, the global search is a form of population 

based method, while the local search or meme, is a typical local 

search operator as tabu search, simulated annealing or similar.

The hybridization scheme is particularly apt to be embedded 

into a hierarchical multicore MAS where higher-level agents 

split candidate population into a collection of subpopulations 

that are sent downward in the hierarchy [19]. Once lower-level 

agents receive their population portion, they compute some 

form of population-based optimization and send the computed 

results towards higher levels of the hierarchy where agents act 

as memes and apply local search operators on the incoming 

data. The coordination and cooperation among  optimization 

agents enable a fine exploration of the problem population and 

thus achieving a considerable convergence speed-up and, at the 

same time, arriving at high quality solutions. 

In this paper, a hierarchical MAS is introduced with a collec-

tion of cooperating memetic agents as a suitable integrated 

approach for exploring e-Learning information and defining per-

sonalized e-learning experiences that represent the most suitable 

sequences of learning activities able to maximize the understand-

ing level of learners with respect to specific learning objectives.

III. E-Learning Mesh and Knowledge Highways: 
An Ontological Educational Environment
In order to explore e-Learning information and generate per-

sonalized experiences, it is first of all, necessary to formalize 

the learning knowledge. Indeed, as shown in Fig. 1, the multi-

tude of information sources proposed by Web 2.0 (Google, You-

tube, Wikipedia, Bing and so on) leads to new learning 

contexts characterized by a plethora of unrelated information 

that are not able to support learners. The formalization task 

can be performed through a collection of well-defined mod-

els structured by exploiting standard technologies for system-

atic representation of knowledge: ontologies. Our goal is to 

describe a methodology to organize this information by 

means of a collection of e-Learning models whose relation-

ships define the so-called e-Learning Mesh.

E-Learning Mesh can be view as a set of highways whose 

paths connect different pairs of cities and cross several interme-

diate points. From the learning point of view, the ends of paths 

are, respectively, information sources and learner’s requirements; 

intermediate points are learning contents satisfying require-

ments by using those sources; highways can be regarded as 

E-Learning systems have proven to be fundamental 
in several areas of tertiary education and in 
business companies.
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routes useful to improve learners’ skill and competence in intel-

ligent and short time way. However, in order to achieve this 

result the most suitable sequence of intermediate points have 

to be chosen and consequently, an efficient method capable of 

examining the mesh and returning those points is needed. As 

will be shown in the following, memetic agents represent an 

appropriate method to explore the mesh and der ive 

sub-optimal paths from mesh. Metaphorically speaking, these 

agents cooperate in order to simultaneously explore several 

portions of highway network and build different sub-paths. 

Successively, agents communicate to connect these sub-paths 

and define the final solution. Fig. 2 shows a simple example of 

a bi-dimensional e-Learning Mesh together with a sample of a 

high-quality e-learning experience taking into account the 

information sources and learner’s preferences. 

Next section is devoted to introduce the E-Learning Models, 

ontological templates useful to build cities belonging to high-

way paths and to define the learning presentation generation algo-

rithm, including a formal representation of metaphoric highway 

exploration performed by memetic agents.

A. E-Learning Models
Proposed e-Learning system is based on a set of models that is 

able to represent the main entities involved in the process of 

teaching/learning and on a set of methodologies, leveraging on 

such models, for the generation of individualized learning 

experiences with respect to learning objectives, learners’ knowl-

edge and learning preferences. These models can be viewed as 

templates useful to define cities belonging to previously men-

tioned highway paths together with roads which connect them, 

i.e. learning experiences. Our solution adopts four models [20]: 

the  ❏ domain model represents the knowledge domain that is 

the object of teaching by means of concepts, relations 

among concepts and teaching preferences connected with 

concepts; 

the  ❏ learner model represents a learner including concepts that 

he knows as well as his learning preferences; 

the  ❏ learning activity model represents a single learning object 

or service that may be used as a building block to generate a 

learning experience [21]; 

the  ❏ unit of learning model represents a whole learning experi-

ence personalized for a single learner and composed by a set 

of target concepts and a sequence of learning activities 

needed to learn the target concepts. 

Our system uses these models to automate some of the phases of 

the teaching/learning process. In particular the teacher may ini-

tialize a unit of learning by setting target concepts and associate 

one or more learners to it (in self-directed learning, learners set-

tle own target concepts and constraints by themselves). Then the 

system generates a personalized learning path (sequence of con-

cepts to be thought) for each learner through a learning path gen-

eration algorithm and introduces placeholders for testing activities. 

Once the learning path is available, the system selects a 

fragment of the learning path and generates the best learning 

presentation (sequence of learning activities) for each enrolled 

learner by applying the learning presentation generation algorithm. 

The learner then undertakes the learning and testing activities 

of the learning presentation until completion. When the learn-

er ends a presentation fragment, his learner model is updated 

on the basis of the results of testing activities and a new learn-

ing presentation fragment is generated (possibly including 

recovery activities for concepts that he did not understand). 

FIGURE 1 E-Learning 2.0 scenario: several sources can provide 
information about ”C language” and learner can assimilate it in 
different way. No order is defined.
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FIGURE 2 An example of bi-dimensional e-Learning Mesh.
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In the following paragraphs we outline the main models 

and algorithms applied by the system (for the sake of concise-

ness we omit some details like test management and learner 

model evaluation and update). In the last paragraph we then 

introduce some problems concerning the learning path genera-

tion algorithm that are originally solved in the remaining part 

of the paper. 

1. The Domain Model

The domain model describes, in a machine-understandable way, 

the piece of the educational domain that is relevant for the 

e-learning experience we want to define, concretize and broad-

cast. In other words, it describes in a formal way, information 

coming from the aforementioned Web 2.0 sources. The mecha-

nism used is named ontology, i.e. an engineering artefact, consti-

tuted by a specific vocabulary [22] used to describe a certain 

reality, plus a set of explicit assumptions regarding the intended 

meaning of the vocabulary words [23]. 

In our approach the ontology is composed by a set of 

 concepts (representing the topics to be taught) and a set of rela-

tions between concepts (representing connections among top-

ics). Such structure can be formally represented as a 1n1 1 2 -tuple G 1C,R1, ...,Rn 2  where C is the set of nodes 

representing domain concepts and each Ri is a set of arcs corre-

sponding to the ith kind of relation. Several kind of relations 

are allowed. As an example we can consider a concept graph 

G 1C,BT, IRB,SO 2with three relations BT, IRB and SO 

whose meaning is explained below (where a and b are two 

concepts of C):

BT 1a, b 2 ❏  means that the concept a belongs to b i.e. b is 

understood if each a so that a belongs to b is understood 

(hierarchical relation);

IRB 1a, b 2 ❏  means that the concept a is required by b i.e. 

a necessary condition to study b is to have understood a

(ordering relation);

SO 1a, b 2 ❏  means that the suggested order between a and b is 

that a  precedes b  i.e. to favor learning, it is desirable to 

study a before b (ordering relation).

Fig. 3 shows a sample domain model in the didactics of 

artificial intelligence exploiting the relations defined above and 

stating that to understand “logics” means to understand “formal 

systems”, “propositional logic” and “first order logic” but, before 

approaching any of these topics, it is necessary to have an “out-

line of set theory” first. Moreover, “formal systems” must be 

taught before both “propositional logics” and “first order logic” 

while it is desirable (but not compulsory) to teach “proposi-

tional logics” before “first order logic”.

A set of teaching preferences may be added to the domain 

model to define feasible teaching strategies that may be applied 

for each available concept. Such preferences are represented as 

an application TP 1C3Props3PropVals 2  S  30, 10 4  where 

Props is the set of didactical properties and PropVals is the set of 

feasible values for such properties. Table 1 provides some 

 (non-exhaustive) examples of didactical property and associated 

feasible values. It is worth noting that TP is defined only for 

couples of Props and PropVals elements belonging to the same 

row in Table 1.

2. The Learner Model

The learner is the main actor of the whole learning process 

and it is represented with a cognitive state and a set of 

learning preferences [24]. The cognitive state represents the 

knowledge reached by a learner at a given time and it is 

represented as an application CS 1C 2  S  30, 10 4  where C 

is the set of concepts of a given domain model. Given a 

concept c, CS 1 c 2  indicates the degree of knowledge (or 

grade) reached by a given learner for c ; the value 0 

 indicates no knowledge, whereas, a value of 10 indicates full 

knowledge. If such grade is greater than a given “passing” 

threshold u then c is considered as known, otherwise it is 

considered as unknown. The learning preferences provide an 

evaluation of learning strategies that may be adopted for 

a given learner. They are represented as an application 

LP 1Props 3  PropVals 2  S  30, 10 4  w h e r e  Props a n d 

PropVals are the same sets defined in Table 1 for teaching 

preferences, whereas the values 0 and 10, represent, respec-

tively, the lowest and highest level of 

learning preference. Different from 

teaching preferences, learning prefer-

ences are not linked to a domain con-

cept but refer to a specific learner. The 

cognitive state of any learner is initially 

void (i.e. CS 1 c 2  5 0 for any c included 

in a given domain model) and may be 

initialized on a teaching domain with a 

pre-test. Learning preferences may be 

initialized by the teacher or directly by 

learners through a questionnaire capa-

ble of evaluating learners’ styles and 

transforming them in suitable values for 

learning preferences. Both parts of the 

 learner model are automatically updated 

by the system during learning activities.

LogicsIRB
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Outline of Set
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FIGURE 3 A sample domain model.
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3. The Learning Activities Model

A learning activity must be performed by a learner to acquire 

one or more domain concepts. Activities may relate to learning 

objects (e.g. textual lessons, presentations, video clips, podcasts, 

simulations, exercises, etc.) or learning services (e.g. virtual labs, 

wikis, folksonomies, forums, etc.). Our system uses learning 

activities as building blocks to generate learning experiences. In 

order to be used in this way, a learning activity LO is described 

through the following elements:

a set of  ❏ concepts CLO part of a given domain model, that is 

covered by the learning activity;

a set of  ❏ didactical properties expressed as an application 

DPLO 1property 2  5 value representing learning strategies 

applied by the learning activity;

a set of  ❏ cost properties expressed as an application 

CPLO 1property 2  5 value that must be taken into account in 

the optimization process connected with the learning presen-

tation generation algorithm.

Didactical properties components have the same meaning 

with respect to teaching and learning preferences, i.e., property 

and value may assume values from a closed vocabulary (see 

Table 1). Different from learning and teaching preferences, they 

are neither linked to a domain concept nor to a specific student 

but to a learning activity. Cost properties are couples that may 

be optionally associated with learning activities, whose proper-

ties may assume values from the closed vocabulary {price, dura-

tion} and whose values are positive real numbers representing, 

respectively the price of a single learning resource and its aver-

age duration in minutes.

4. The Unit of Learning Model

A unit of learning represents a sequence of learning activities 

needed for a learner in order to understand a set of target con-

cepts in a given domain with respect to a set of defined cost 

constraints [25], [26]. It is composed by the following elements:

a set of  ❏ target concepts TC part of a domain model, that has to 

be mastered by a given learner in order to successfully 

accomplish the unit of learning;

a set of  ❏ cost constraints CC 1property 2  5 value that must be 

taken into account in the optimization process connected 

with the learning presentation generation algorithm;

a  ❏ learning path LPath 1 c1, . . . , cn 2  i.e., an ordered sequence 

of concepts that must be taught to a specific learner in order 

to let him master target concepts;

a  ❏ learning presentation LPres 1 lo1, . . . , lom 2  i.e., an ordered 

sequence of learning activities that must be presented to a 

specific learner in order to let him/her master the target 

concepts.

While target concepts are defined by the course teacher, the 

learning path and the learning presentation are created by the 

generation algorithms described below. Concerning cost con-

straints, the property may assume values from the closed vocab-

ulary {price, duration}. Feasible values are positive real numbers 

representing, respectively the maximum total price and the 

maximum total duration of the unit of learning. 

5. The Learning Path Generation Algorithm

Having described the basic elements useful to define the main 

components of e-learning knowledge (see Fig. 4), it is neces-

sary to specify meaningful relationships joining them: learning 

paths. The generation of the learning path is the first step to 

completely generate a unit of learning. Starting from a set of 

target concepts TC and from a domain model, a feasible learning 

path must be generated, taking into account the concepts graph 

G 1C,BT, IRB,SO 2  part of the domain model (with 

TC # C 2 . The four steps of the learning path generation algo-

rithm are summarized below:

The  ❏ first step builds the graph G r 1C, BT, IRB r, SO r 2   by 

propagating ordering relations downward the hierarchical 

relation. IRB r and SO r are initially set to IRB and SO 

respectively and then modified by applying the following 

rule: for each arc ab [ IRB r: SO r substitute it with arcs ac 

for all c [C such that there exists a path from c to b on the 

arcs from BT .

TABLE 1 Example of didactical properties and feasible values.

PROPERTIES FEASIBLE VALUES

DIDACTIC METHOD DEDUCTIVE, INDUCTIVE, ETC.

ACTIVITY TYPE
DISCUSSION WITH A PEER, DISCUSSION 
WITH THE TEACHER, ETC.

INTERACTIVITY LEVEL HIGH, MEDIUM, LOW

Information Sources

Domain Model Learner Model

E-Learning Models

Ontological E-Learning 2.0

Context

C

Programming
Interactivity

Type

Didactic

Context

Age Range

Resource

Type

Difficulty

Principles

Data

Variables Constant

FIGURE 4 The e-Learning 2.0 scenario with e-Learning models: 
C language” and learner ontology support student to can 
assimilate information.
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The  ❏ second step builds the graph Gs 1C r, R 2  where C r is the 

subset of C including all concepts that must be taught 

according to TC i.e. C r is composed by all nodes of G r 
from which there is a ordered path in BT : IRB r to con-

cepts in TC (including target concepts themselves). R is ini-

tially set to BT : IRB r : SO r but all arcs referring to 

concepts external to C r are removed.

The  ❏ third step finds a linear ordering of nodes of Gs by 

using the depth-first search algorithm. The obtained list L 

will constitute a first approximation of the learning path.

The  ❏ fourth step generates the final learning path LPath by 

deleting from L all non-atomic concepts with respect to the 

graph G i.e. LPath will include any concept of L apart con-

cepts b so that ab [  BT  for some a. This ensures that only 

leaf concepts will be part of LPath.

As an example we may consider the concept graph in Fig. 

3 as G and {“Logics”} as TC. Following the steps above, to 

understand logics, the learner has to learn the outline of set 

theory, then formal systems, then propositional logics and, final-

ly, first order logics so LPath = (“Outline of Set Theory”, “Formal 

Systems”, “Propositional Logics”, “First Order Logics”). If we con-

sider {First Order Logics} as TC, instead, the algorithm result 

is: LPath = (“Outline of Set Theory”, “FormalSystems”, “First Order 

Logics”) meaning that propositional logic is not a strict require-

ment for first order logic.

6. The Learning Presentation Generation Algorithm

The joint usage of e-learning models and learning paths defines 

the aforementioned E-Learning Mesh, the collection of 

 knowledge highways whose exploration is defined by the pre-

sentation generation algorithm. The presentation generation 

algorithm is purposed to build a presentation that is part of a 

unit of learning that is suitable for a specific learner. The pre-

sentation generation algorithm computes a learning presenta-

tion by exploiting several factors such as: 

a 1) learning path LPath that has to be covered,

a set of teaching preferences 2) TP belonging to a domain 

model, 

a cognitive state 3) CS and a set of learning preferences LP, 

both part of the learner model associated to the target learner, 

a set of optional 4) cost constraints CC on a set of available 

learning activities. 

The steps of the presentation generation algorithm are sum-

marized below:

The  ❏ first step is to select the sub-list L of LPath that has to be 

converted in a presentation. L is the sequence of all the con-

cepts of LPath not already known by the learner (i.e. any 

concept a so that CS 1a 2  , u). If L is empty then the algo-

rithm ends because the learner already knows all concepts 

of the learning path.

The  ❏ second step is to define the best sequence of learning 

activities P, selected from available learning activities, cover-

ing L on the basis of TP, LP and CC .

To solve the second step, first of all a measure of distance 

dTP 1 lo, c 2  between an activity lo and the set of preferences TP 

has to be defined with respect to a concept c . In a similar way 

a measure of distance dLP 1 lo 2  based on LP may be defined. 

A further measure d 1 lo, c 2  shall be defined as a weighted sum 

of the two measures. 

Once the measure of distance is defined, the problem of 

selecting the best set of activities P covering concepts of L 

becomes a PLP that may be outlined with the bi-partite graph 

in Fig. 5 where available activities are displayed on the left and 

concepts to be covered on the right. P must be built as the small-

est set of activities covering all concepts of L with the minimum 

sum of distances between activities and covered concepts.

In the situation depicted in Fig. 5 we have two learning 

objects to use in order to explain a set of three subjects. There 

is an arrow between a learning object LOi and a subject Cj 

only if the metadata instance of LOi includes a semantic link 

to the subject Cj. 

For each couple 1LOi,Cj 2  linked in the bipartite graph, there 

is an assigned value d 1 i, j 2 . The value d 1 i, j 2  represents the dis-

tance between LOi and Cj. Short distances define good cover-

ings. Furthermore, to each learning object LOi is associated a 

value p 1 i 2  representing the cost of the introduction of the learn-

ing object LOi into the sequence of LOs delivered to the learner. 

Let’s assume that distances d 1 i, j 2  are calculated applying a 

specific function that evaluates the matching between the meta-

data values of LOi covering Cj and the learning preferences of 

the learner who requests the personalized e-learning experience. 

Now, consider m as the number of learning objects available 

and n the number of subjects in the Learning Path to be filled. 

Set yi, 1 i 5  1, . . . ,m 2 , a binary vector that assumes value 1 if 

you decide to use the learning object LOi, 0 otherwise, and 

xij, 1 i 5  1, . . . , m and j 5  1, . . . , n 2 , is a binary vector 

assumes value 1 if subject Cj is covered by the learning object 

LOi, 0 otherwise. The linear programming model which for-

malizes the whole problem is described as follows:

mina
m

i51

p 1 i 2yi1 a
m

i51
a

n

j51

d 1 i,j 2xij

 subject to constraints

LO1

d(1,1)

d(2,3)

d(1,3)

d(2,2)

C1

C2

C3

LO2

p(1)

p(2)

FIGURE 5 Formalization of a plant location problem in e-learning context.
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a
n

j51
xij5 1 i5 1, c, m

xij # yi i5 1, c, m j5 1, c, n

xij [ E0,1F i5 1, c, m j5 1, c, n

yi [ E0,1F i5 1, c, m.

The optimal solution of the PLP means the identification of 

the optimal set of learning objects that better match (minimal 

distance) the learner preferences.

IV. Generating Personalized E-Learning 
Experience through Memetic Agents Exploration
In previous section the formalization of e-learning knowledge 

has been introduced. This knowledge has been exploited to 

realize a collection of paths, connecting learning objects and 

contents, modeled by means of the PLP problem. In this sec-

tion a methodology based on memetic optimization is intro-

duced in order to explore different learning paths and return 

the best learning presentation which maximizes learner’s 

understanding capabilities (see Fig. 6). The methodology is 

based on the joint use of multi-agent systems and memetic 

computation. This integration results in a parallel method of 

learning paths exploration able to:

generate best personalized e-learning experiences;1) 

minimize the computational effort necessary to compute 2) 

the optimal matching.

The benefits obtained from this hybrid technique support, 

mainly, the e-learning 2.0 frameworks where the number of 

information sources is very large. More in detail, our approach 

represents an extended version of multi-island genetic algo-

rithms [27] [28] where a collection of agents is devoted to par-

allel explore a problem’s search space distr ibuted in a 

heterogeneous computer network. The extended model that 

we propose introduces a novel idea of agent whose behavior is 

dependent upon the hardware configuration of the host com-

puting it. Indeed, our memetic agents deal with multi-core 

processors in order to explore problem solutions in a more effi-

cient way.

A. An Extended Island Model 
for Parallel Memetic Algorithms
Our proposal of memetic optimization exploits a heterogeneous 

computer network organized in a star topology (Fig. 7), com-

posed by n 1  1 hosts, where the first n hosts are devoted to 

performing our evolutionary parallel approach, whereas, the 

additional host, named supervisor, is responsible for administrative 

aims as the population distribution, the islands’ synchronization 
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and the application of a complete local search strategy. Our 

method partitions the n hosts into two categories named, 

respectively, as I1 and I2 where I1 is the collection of single core 

processors, whereas, I2  is the collection of multi cores proces-

sors. The number of islands is defined as follows:

0 Islands 0 5 0 I1 0 1 aa
pj[I2

cores 1pj 2 b 1 1,

where Islands is the collection of computational entities com-

posing our model and cores 1pj 2  is a function returning the 

number of cores of the processor pj. The network hosts can 

adopt two different behavioral strategies: the supervisor and 

genetic behaviors.

1. Supervisor Behavior

The supervisor is an agent responsible for generating an initial 

collection of candidates’ solutions of a given optimization prob-

lem P. Let pop be the generated population. Successively, the 

supervisor distributes |pop| chromosomes on the 1 0 I1 0 1 0 I2 0 2  
hosts by following a uniform approach in order to obtain a col-

lection of 1 0 I1 0 1 0 I2 0 2  disjoint population named popi with 

i 5  1, . . . , 1 0 I1 0 1 0 I2 0 2 . Each host will manage with at most  

<|pop|/ 1|I1|1|I2| 2 = candidate solutions. The host i computes 

the genetic behavior on its population portion and, successively, 

it returns the best besti solutions selecting them by means of a 

Gaussian approach. Once received the a
0I1 01 0I2 0
i51

besti, the super-

visor applies additional genetic evolutions on the best individu-

als coming from different species (the optimized 

subpopulations) together with a local search strategy such as 

simulated annealing, tabu search or other personalized refine-

ments in order to eventually improve the islands best solution.

2. Genetic Behavior

The hosts implementing the genetic behavior are agents capable 

of applying two operations in a sequential way:

Hierarchical distribution among processor cores ; ❏

Genetic operators: crossover, mutation and migration. ❏

The hierarchical distribution is performed only if it is neces-

sary, i.e., only if the system is composed by more than one core; if 

popi is the population associated with ith host and coresi is the 

number of processor cores, then the genetic behavior generates 

coresi population, popij with j5 1, . . . , coresi and it distributes 

the novel populations on the processor cores. Formally,

popi5 d
coresi

j51

popij   with   i [ E1, c, 0 I1 0 1 0 I2 0 F.

Once received the subpopulation popij, the 

jth core applies the genetic operators in a stan-

dard way in order to improve the fitness mean 

value of popij; let mpopij
 be this mean value. The 

island uses the mean values mpopij
 with 

j5 1, . . . , coresi in order to choose the best 

chromosomes belonging to core populations. 

These chromosomes are chosen in a selective 

way by exploiting the following Gaussian distribution:

gi 1mpopij
2 5 a 1

"2p # s
 exp a2 1

2
ampopij

2m

s
b2bb # h, 

where mpopij
 is the mean fitness value coming from jth core, m is 

the mean value, s is the standard deviation, h represents a scaling 

factor. Then, the number of candidate solutions to apply local 

search, bestij, is defined by the previous Gaussian function, the 

mean fitness value and the size of subpopulation popij:

bestij5gj 1mpopij
2* 0 popij 0 .

Then the total number of chromosomes (rounded up) 

returned to the supervisor island is:

besti5 a
coresi

j51
<bestij=, 

where bestij denotes the number of the best candidates coming 

from the jth cores on the ith island. The choice of m, s, h has to 

be done with attention because this choice determines the bestij 

value. If bestij is small then the mean value is very high but the 

number of solutions that are proposed to improve their fitness is 

very small, vice versa, if bestij is large then its mean value is not 

very high but the population contains a high number of chromo-

somes that are proposed to improve their quality. If the island 

implementing the genetic behavior is hosted on a single core pro-

cessor then the hierarchical distribution is omitted and the classi-

cal sequence of genetic operators is applied and the same Gaussian 

function is used to select the best besti chromosomes from popi. 

B. Applying the Extended Island Model 
for Memetic Algorithm to e-Learning Scenario
As shown in previous section our e-Learning system defines a 

PLP optimization problem associating a collection of didactic 

concepts to a set of learning objects. The weight of the arcs 

connecting concepts and learning objects are defined by 

exploiting the user learning preferences, whereas, the concept 

costs are derived from a combination of multiple factors. 

When our approach is used to model an e-Learning 2.0 sce-

nario, the related PLP problem becomes too complex to be 

solved through a deterministic approach or a sequential evo-

lutionary algorithm. In this section the extended island model 

defined in the previous section will be applied to the e-Learn-

ing PLP problem by defining the chromosome template, the 

collection of genetic operators exploited by islands, the local 

search strategy used by the supervisor island and the set of 

When our approach is used to model an e-Learning 
2.0 scenario, the related PLP problem becomes too 
complex to be solved through a deterministic approach 
or a sequential evolutionary algorithm.
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Gaussian distribution parameters used to derive the best 

matching among learning objects and didactic activities. In 

order to solve the PLP problem previously defined, it is nec-

essary to fix different genetic properties and parameters 

involved in the evolutionary schemas. In details we have to 

define i) how to represent a potential problem solution, i.e., a 

chromosome, ii) the genetic operators to exploit in order to 

run genetic evolutions and iii) the fitness function indicating 

how good the solutions computed by the algorithm are. As 

previously stated, a solution of the defined problem is given 

by the optimal allocation of m didactic objects to n learning 

concepts where each concept has to be covered by one and 

only one didactic activity. In other words, a chromosome L 

can be defined as an integer values vector composed by n 

components (genes) range in 31,m 4, where the ith gene li = j 

means that jth learning concept is covered by the ith learning 

object (i.e. p 1 i 2  5 1 and d 1 i, j 2 $ 0). In this way the algo-

rithm fitness function (to minimize) is

fitness 1L 2 5 a
m

i51

p 1 i 2 1 a
m

i51
a

n

j51

d 1 i,j 2
with only one constraint: if c is a given chromosome and, c 3 i 4 and 

c 3 j 4 with j .  i are two learning objects related with concept 

i and j and c 3 i 4 5 c 3 j 4 then, necessarily, it must be j 5  i 1  1. 

To test the solution’s feasibility, O 1n2 2  computational steps are 

necessary, where n is the chromosome size. In fact, the constraint 

can be checked only by analyzing each of n2 gene pairs. If we 

suppose that the number of individuals and the number of genetic 

iterations are close to n, then the total computational time neces-

sary to determine the chromosomes’ feasibility is O 1n4 2  where 

the hidden integer constant may assume a very large value 

(depending upon the number of genetic evolutions).

Even though this time is polynomial, it is too high to build a 

canonical genetic algorithm that is sequential in nature. The high 

computational complexity thus serves as further motivation on 

the use of a distributed/parallel evolutionary approach. 

Once the chromosome template has been defined, the crosso-

ver and mutation operators, exploited by the islands to evolve 

their subpopulation portion, are introduced. Proposed genetic 

algorithm uses a typical one-point crossover applied with proba-

bility Pcrossover5 1/Population Size and, at same time, the algo-

rithm uses a classical mutation operator applied with probability 

Pmutation5 1/n. Our proposal exploits an iterative approach to 

chose the crossover and mutation point in order to minimize the 

probability to generate unfeasible chromosomes. In particular, the 

algorithm generates the crossover point i only if c 3 i 4 2 c 3 i 1  1 4; 
in the same way the algorithm generates the mutation point i 

only if c 3 i 2  1 4 2 c 3 i 4 or c 3 i 4 2 c 3 i 1  1 4.
The proposed parallel algorithm enables the computation of a 

feasible solution in a rapid way. Moreover, the solution quality is 

improved with respect the sequential evolutionary approaches 

because our proposed approach has improved the speciation level 

of the population using a hierarchical distribution. However, in 

order to further refine the quality, the supervisor can improve the 

parallel genetic solution by means of an appropriate local search 

process. In particular, each genetic host computes a sub-optimal 

population through the Gaussian function presented in the 

 previous section and, successively, the supervisor merges the dis-

tributed sub-populations and, iteratively, applies a local refinement 

on chromosomes composing the whole population.

The first step is to define the so-called neighborhood, i.e., a set 

of feasible solutions that are close to the solution computed by the 

parallel genetic approach know as L. In particular, the neighbor-

hood contains solutions obtained by adding, deleting or replacing 

a concept from L. The local search operator exploits the neighbor-

hood to improve the fitness of the current sub-optimal solution. 

Formally, let L 5  1 l1, l2, l3, . . . , ln 2 [ E1, . . . ,mFn be a 

current feasible solution coming from the genetic islands. 

C l e a r l y, a n  1n 1  1 2 - t u p l e  1 l1, l2, . . . , li21, li, l ri, 
 li11, . . . , ln 2  [  E1, . . . ,mFn11 obtained by adding a concept 

l ri to the n-tuple L [ E1, . . . ,mFn is not a feasible solution 

because it does not satisfies chromosome constraints. In the 

s a m e  way  a n  1n 2 1 2 - t u p l e  1 l1, l2, . . . , li21, li11, 

 . . . , ln 2  [  E1, . . . ,mFn21 obtained by removing a concept li, 

from the n-tuple L [  E1, . . . ,mFn is not a feasible solution. 

Vice versa a novel solution L r5 1 . . . , li21, l ri, li11, . . . 2  
obtained by replacing a concept, li with another concept l ri may 

be a feasible solution. Different cases have been considered here:

l ri 2  li21, l ri 2  li11 1)  and li21 2 li11 (l ri is not present in 

the remaining part of the chromosome), with 

fitness 1L r 2  ,  fitness 1L 2  
l ri  5  li21 and l ri 2 li11 with fitness 1L r 2 , fitness 1L 22)  

l ri 2 li21 and l ri 5 li11 with fitness 1L r 2 , fitness 1L 23)  

l ri 2 li21, l ri 2 li11 and li21 2 li114)  (l ri is not present in the 

remain ing  par t  o f  the  chromosome) , wi th 

fitness 1L r 2  .  fitness 1L 2  
l ri 5 li21 and l ri 2 li11 with fitness 1L r 2 . fitness 1L 25)  

l ri 2 li21 and l ri 5 li11 with fitness 1L r 2 . fitness 1L 26)  

l ri 2 li21, l ri 2 li11 7)  and li215 li11 with fitness 1L r 2  .  

fitness 1L 2  
l ri 2 li21, l ri 2 li11 8)  and li215 li11 with fitness 1L r 2  .  

fitness 1L 2  
It is clear that solutions (1), (2), (3) are feasible and optimal 

solutions, while solutions in cases (4), (5), (6) although are feasible, 

they are non optimal solutions. Further, the solutions in case (7) is 

an optimal but unfeasible solution while solutions in case (8) is 

neither feasible nor optimal. In short, starting from solution L and 

by applying the replacement of activity li with l ri, we obtain better 

solution with probability P = number of feasible and optimal 

solutions/number of solutions = 3/8, i.e., after three refinement 

steps, the chromosome improves its fitness with high probability.

V. Exploring e-Learning Knowledge: 
Experimental Results
This paper has proposed an innovative methodology to find an 

optimal personalized learning activity through the memetic 

exploration of ontologically defined learning paths. This section 

is devoted to compare the performance from two different per-

spectives: a computational view where the focus is on the compu-

tational effort and the solution quality computed by our 
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hierarchical memetic algorithm; a learning view highlighting the 

benefits of proposed framework as an add-on to on-line learn-

ing. From a computational point of view, the performances of a 

typical sequential genetic algorithm are compared with our pro-

posal of multi-island memetic approach both in terms of com-

putation time and solution fitness. The parallel simulation were 

carried out on a cluster of eight AMD Dual Opteron(tm) 250 

2.40 GHz hosts, each one equipped with 2 Gb of RAM and 

running the Microsoft Windows XP x64 operating systems. The 

simulation of sequential genetic algorithm were carried out on a 

AMD Opteron 252 2.61GHz with 8 Gb of RAM memory. 

Our benchmark uses 1) a matrix composed by 40 rows and 

1000 columns representing the distances between 40 concepts, 

composing the personalized learning path, and 1000 learning 

objects in the distributed repository, and, 2) a vector representing 

the costs associated with the objects. For sequential genetic algo-

rithm (SGA), the parameters are: Population Size = 2000; Maxi-

mum Number of Evolutions = 1000; Crossover Probability = 

0.0005; Mutation Probability = 0.025. For the parallel hierarchi-

cal memetic algorithm (PHMA), different configurations have 

been tested for different number of hosts and different number 

of islands. In detail, let #hosts (with #hosts 5  1, . . . , 8) be 

the number of computer hosting the genetic islands and let 

#islands (with islands ={2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16}) be the 

number of genetic islands used in the systems, then:

   Population Size 5  2,000

  Island Population Size5
2,000

[islands
 Maximum Number of Evolutions5 1,000.

Moreover, the Gaussian function exploits 

the following parameters to select the 

best chromosomes from island subpopu-

lations: m5 40.783, s5 0.01, h5  0.2; 

these values have been computed exper-

imentally by solving the proposed prob-

lem through a simple sequential genetic 

algorithm using a low number of initial 

chromosomes and search generations. In 

order to evaluate the algorithms, several 

criteria measuring the solution quality 

and computation time have been adopt-

ed. CPU time represents the average of 

computation time expressed in millisec-

onds upon the algorithm termination. 

Average fitness is the average fitness value 

of the solutions obtained for all the 

genetic algorithms (sequential and paral-

lel) during a given test configuration. 

Best fitness is the fitness of the best solu-

tion obtained among all simulation runs 

and gap is the difference between the fit-

ness the best found solution and the fit-

ness of best known solution (in our case 

40.7464) of the benchmark problem. To 

compare the PHMA and SGA algorithms considering both 

solution quality and computational time, two additional 

parameters have been considered: PHMA vs SGA (time) and 

PHMA vs SGA (Fitness). The former measures the percentage 

improvement in CPU time; the latter indicates the percentage 

improvement in solution quality. Our results show that the 

PHMA algorithms are capable of computing a fitness value 

comparable with the fitness value computed by a simple SGA 

but remarkably reducing the computational time. Figs. 8 and 

9 show the performance comparisons between PHMA and 

SGA. Though they are not validated through a statistical 

method, experimental results have been computed several 

times in order to obtain an accurate estimation of computed 

fitness values.

The algorithms were implemented using Java programming 

language. JGAP (http://jgap.sourceforge.net/) library has been 

exploited to used to provide the genetic operators features, 

whereas, the Fracture (http://kccoder.com/fracture/) library 

has been used distributing the multi-island memetic algorithm 

on the different processor cores. All communications between 

supervisor and genetic agents have been implemented through 

the Java Remote Method Invocation (RMI) platform.

An on-field experimentation was performed to demonstrate 

the benefits of our optimization system by implementing a 

plug-in for a commercial Learning Management System named 

IWT. IWT has been employed in many contexts as enterprise, 

universities and schools. IWT supports Web 2.0 by integrating 

resources, tools and services. Indeed, IWT incorporates a wide 

set of Web 2.0 tools as e-Portfolio, blogs, podcasts, wikis, social 

networking, shared areas, RSS feeds, etc.. This characteristic 

FIGURE 9 PHMA versus SGA–CPU time comparison.
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enables IWT to be a suitable Learning Management System to 

test our optimization approach. 

Our experimentation involved a group of 38 voluntary 

learners belonging to 7 small and medium enterprises dealing 

with vocational training on enterprise management. The group 

of learners was split in two separate sub-groups: a first sub-

group composed of 20 learners was enabled to use all e-learn-

ing facilities except memetic optimization while a second 

sub-group composed of 18 learners was enabled to access the 

whole systems (including hierarchical memetic algorithm). All 

the voluntary learners were tested before and after a training 

phase on the same topics. In all the tests, the learners’ skills in 

the chosen domain were quantified using three ability ranges: 

low-level (0–3 scores), medium-level (4–7 scores) and high-level 

(8–10 scores). Fig. 10 shows the performances of the two sub-

groups; as it can be seen, the progress made by the second group 

of students is much sharper with respect to the first group [29]. 

As shown, the proposed ontological/memetic agent-based 

platform provides an integrated approach towards achieving 

personalization in e-Learning 2.0 environments by exploiting 

an advanced knowledge exploitation and exploration based on 

an innovative computational intelligence area such as the 

memetic computing. 

VI. Conclusions
The proposed ontological/memetic distributed platform pro-

vides an integrated approach towards achieving personalization 

in e-learning environments. Our proposal enhances significantly 

the overall system in terms of flexibility and efficiency while it 

introduces a high degree of agents and e-learning platforms 

interoperability utilizing ontology-based representation. The pre-

sented agent platform can support various personalization levels 

(intended as most fitting sequences of learning activities able to 

maximize the understanding level of learners with respect to 

specific learning objectives) exploiting machine-understandable 

representations of educational domains and learners’ characteris-

tics. In particular, aforesaid aims have been achieved through the 

joint use of different methodologies and techniques: ontological 

representation, user modeling techniques, graph algorithms. 

Moreover, we have shown how the ontological representation of 

e-learning environments allows for modeling a PLP whose solu-

tion defines an optimal learning experience. The computational 

intelligence methodologies and, in particular, the memetic com-

puting methodology has been exploited to solve the e-Learning 

PLP an efficient manner that allows system designers to realize 

an efficient in-time learning environment.
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